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Zoonotic disease outbreaks are an important threat to humanhealth and numer-
ous drivers have been recognized as contributing to their increasing frequency.
Identifying and quantifying relationships between drivers of zoonotic disease
outbreaks and outbreak severity is critical to developing targeted zoonotic dis-
ease surveillance and outbreak prevention strategies. However, quantitative
studies of outbreak drivers on a global scale are lacking. Attributes of countries
such as press freedom, surveillance capabilities and latitude also bias global out-
break data. To illustrate these issues, we review the characteristics of the 100
largest outbreaks in a global dataset (n= 4463 bacterial and viral zoonotic out-
breaks), and compare them with 200 randomly chosen background controls.
Large outbreaks tended to have more drivers than background outbreaks and
were related to large-scale environmental and demographic factors such as
changes in vector abundance, human population density, unusual weather con-
ditions andwater contamination. Pathogens of large outbreaksweremore likely
to be viral and vector-borne than background outbreaks. Overall, our case study
shows that the characteristics of large zoonotic outbreaks with thousands to
millions of cases differ consistently from those of more typical outbreaks. We
also discuss the limitations of our work, hoping to pave the way for more
comprehensive future studies.

This article is part of the theme issue ‘Infectious disease macroecology:
parasite diversity and dynamics across the globe’.

1. Introduction
Disease emergence is widely recognized as a major threat to biodiversity and
human health [1–3]. Globalization and land conversion have led to unprecedented
mixing ofwild species, humans anddomesticated animals frompreviously uncon-
nected biological communities, often causing cross-species pathogen exposure and
resulting in the increased emergence of novel pathogens [4,5]. The majority of
emerging human diseases, as many as 70% by some estimates [6], are zoonotic,
caused by spillover from wildlife and/or via infection of domesticated animals.
Because the number of zoonotic outbreaks also appears to be increasing over
time [7], gaining a better understanding of the drivers of zoonotic outbreaks is
crucial to mitigating disease risks.

While disease outbreaks cause considerable distress in aggregate [6–8], it is also
true thatmost outbreaks inmodern times are contained relativelyquickly. The typi-
cal outbreak is limited to fewer than 100 cases [9] and the global impact of most
communicable diseases in terms of disability adjusted life years (DALY) lost on
an annual basis seems to be decreasing over time [10]. However, large outbreaks
that escape control and infect hundreds to thousands of humans or domestic ani-
mals still occur regularly (figure 1). For example, an outbreak of salmonellosis in
the United States in 1985 infected more than 160 000 people [13] and a 1978 out-
break of the Oropouche virus in Brazil is estimated to have resulted in
approximately 227 000 human cases [9]. The second-largest outbreak in recent
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Figure 1. Global numbers of outbreaks with a minimum of 100 cases.
Depicts potentially zoonotic outbreaks with at least 100 reported cases
and start dates between 1975 and 2017 from Gottdenker et al. [11].
Based on these data, it seems most likely that the frequency of large out-
breaks is either stable or increasing over time. However, reporting effort,
detection capabilities and human population density are all also increasing
in many regions over time [12], and a previous study showed that apparent
temporal trends in outbreak frequency can vary considerably depending upon
the potentially confounding covariates and types of outbreaks (e.g. pathogen
taxa) considered [7]. (Online version in colour.)
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years was the H1N1 influenza pandemic of 2009–2010, which
caused 123 000–395 000 estimated deaths globally [14,15].
Even that pandemichasnowbeeneclipsedby theCovid-19pan-
demic, which as of this writing is estimated to have infected
200 million people and caused 4.3 million deaths [16]. Under-
standing factors that distinguish typical localized outbreaks
from large regional epidemics and pandemics is an important
challenge in the field of infectious disease macroecology [17].
However, global quantitative studies to date have been limited
to overall trends in the number of outbreaks over time [6,7] or
patternsofdiseasediversity [18–20] rather than trends in the fac-
tors that cause outbreaks. Here, we discuss the need for
quantitative studies of variation in outbreak drivers, as well as
some of the challenges in accurately quantifying outbreak
dynamics at global scales.

(a) Exploring the drivers of zoonotic outbreaks
Numerous factors have been implicated as potential drivers of
zoonotic outbreaks [11,21,22], including encroachment on wild
areas [23–25], biodiversity loss [26,27], climate change [23,28]
and socioeconomic factors such as poverty [29,30] and urbaniz-
ation [31,32]. Many studies have explored the drivers of
individual outbreaks and pandemics (e.g. [31,33,34]) or con-
sidered risk factors for future spillover or outbreaks of
individual diseases [35–37]. For example, several studies have
considered how spatial variation in environmental conditions
such as temperature and rainfall [36], forest loss [38] and host
diversity [39,40] affect overall Ebola virus spillover risk. How-
ever, the proportion of Ebola outbreaks in which related factors
such asweather conditions, deforestation orhuman–animal con-
tact played a role as a proximate trigger has not been quantified.
In general, no studies of whichwe are aware have quantified the
relative frequency with which these and other environmental
and demographic factors contribute to particular outbreaks, or
how observed drivers vary with outbreak severity.
There is also a dearth of quantitative work on socioeco-
nomic drivers of zoonotic disease outbreaks. For example,
one hypothesis is that international trade and travel contribute
to many large outbreaks by providing opportunities for trans-
mission among populations in different countries. Travel was
shown to play a role in at least a few large outbreaks such as
the 2003 SARS epidemic [41], the H1N1 influenza pandemic
[33] and the 2014 Ebola epidemic [42]. However, no studies
we know of have quantified the proportion of outbreaks
triggered or amplified by international travel, or whether out-
breaks in which international travel is important tend to be
larger than those confined to a single country. Other socioeco-
nomic factors such as poverty, armed conflicts and variation in
public health infrastructure are similar in that they have been
investigated for some outbreaks and some diseases [29,43–
50] but their overall contribution to disease outbreaks has not
been quantified. Even whether the driver profile (i.e. which
of multiple potential drivers considered in aggregate contrib-
ute to a given outbreak) of large outbreaks tends to differ
from that of smaller outbreaks has not been directly tested,
nor has the hypothesis that large outbreaks will have more
proximate drivers than smaller outbreaks. Few hypotheses
about outbreak drivers have been tested quantitatively at
global scales.
(b) Reporting bias and other data challenges
Complicating global studies of disease trends are attributes of
countries, factors that can vary over space and time, that intro-
duce bias to any global dataset of disease or outbreak
occurrences [7,51]. Past studies have documented more out-
breaks in countries with high gross domestic product (GDP),
and in Europe and North America, than lower GDP countries
in other regions of theworld ([7,23] see also figure 2a). It seems
unlikely that these countries truly experience more outbreaks
than other countries at lower latitudes that are just as populous,
and that in many cases have higher overall disease diversity
[18,52]. Instead, global outbreak data appear to be biased by
factors that vary among countries and regions [7].

One broad class of factors are related to countries’ chances
of detecting and reporting outbreaks. For example, it has been
shown that countrieswith larger numbers of Internet users and
greater press freedom are more likely to report outbreaks
[51,53,54]. Indicators of economic activity such as GDP could
be related to variation in health infrastructure and surveillance
capabilities, leading to greater chances that outbreaks are
detected in more affluent countries [7]. At the same time,
poverty is a risk factor for many diseases [55,56], potentially
leading to increased risk and greater numbers of outbreaks in
impoverished countries. Thus, correlations between GDP and
outbreak numbers in either direction could occur. Supporting
the hypothesis of detection bias, Smith et al. [7] found GDP
to be positively correlated with number of known outbreaks
per country. Moreover, improvements in values of the human
development index (HDI), typically highly correlated with
GDP [57], have been associated with reductions in outbreak
discovery and communication lag times [58].

Other factors may affect the chance that a country will
experience an outbreak, and can also be considered drivers
themselves in some contexts (see below). Ultimately, the avail-
ability of hosts is perhaps the largest single risk factor for
outbreaks [5]. Population density might, therefore, be expected
to be the most important aspect of demographic variation due
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Figure 2. Global distribution of zoonotic outbreaks. Locations of all 4463 potentially zoonotic outbreaks sampled at random for background cases (a) and countries
that had at least one of the top 100 outbreaks (b). Countries in grey lacked outbreaks in each respective dataset.
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to its influence on transmission rates [59]. However, Smith et al.
[7] showed that total humanpopulation sizewasmore strongly
correlated with number of outbreaks (across countries) than
population density, regardless of the subset of outbreaks con-
sidered. Latitude has also been shown to be related to disease
diversity, with tropical countries showing greater diversity
[18,52] than high latitude countries. This could reflect the influ-
ence of environmental conditions that vary with latitude (e.g.
[60,61]). Lower latitude assemblages also contain higher
mammalian and avian host diversity [62,63], which has been
shown to be positively correlated with outbreak and disease
emergence risk [23,64].

Whether factors affecting disease diversity and outbreak risk
should be considered a source of bias will vary somewhat with
the question of interest. For instance, in a study of the effects of
an anthropogenic driver such domestic livestock production on
outbreak risk, latitude would be regarded as a confounding
factor. However, if the goal of a study is to generate an accurate
statistical model of spatial variation in disease diversity, latitude
would be regarded as an important predictor variable.
Smith et al. [7] was among the first quantitative global-scale
outbreak studies to control for variation in detection capabili-
ties, reporting effort and disease diversity among countries.
They showed that global outbreak frequency consistently
increased over time in analyses of raw data. However, this
trend was often diminished or absent in models that included
covariates such as latitude, GDP and population density. What
effect, if any, these factors would have on statistical models of
variation in outbreak drivers has not been explored. However,
it might be expected that at least reporting bias (e.g. press
freedom) might influence such analyses.

(c) Case study: drivers of the 100 largest bacterial and
viral zoonotic outbreaks in recent history

To illustrate these issues, we studied the variation in the fre-
quency of drivers reported in a sample of cases from a global
dataset of 4463 outbreaks of bacterial and viral zoonotic
pathogens. We describe these data in more detail below.
They were derived from the GIDEON Guide to Outbreaks
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[9], which collects information from the same sources as two
previous global studies of outbreak diversity and frequency
[6,7]. Here, we focus on whether the driver profiles of the lar-
gest 100 outbreaks in the dataset, in terms of case numbers,
are different from those of 200 randomly chosen controls.
In statistical terms, we compare the tail of the distribution
to a random sample.

We scored outbreaks using criteria reflecting drivers dis-
cussed in published reviews (e.g. [21,22]). Our approach was
designed to represent a variety of different kinds of drivers
including ecological [24,27,53], environmental [23,28] and
socioeconomic [29,30,65] factors. In total, we evaluated the
potential influence of 48 different drivers on each outbreak
(electronic supplementary material, table S1). We also consider
whether apparent differences in the frequencywithwhich each
of these factors is important in large versus background out-
breaks is robust when analyses include variables reflecting
variation in reporting and disease diversity among countries
and over time (following [7]). Finally, we consider broad differ-
ences in the characteristics of pathogens, including whether
viral or bacterial pathogens more frequently cause large
outbreaks, and testing for the influence of transmission mode
(e.g. direct versus environmental transmission).
 535
2. Case study materials and methods
(a) Sampling and scoring outbreaks
We identified candidate outbreaks of zoonotic pathogens from
the GIDEON Guide to Outbreaks [9] based on the diseases
reported. GIDEON defines an outbreak as a number of clus-
tered cases which is higher than the average or expected
incidence for a region where the cases occur. Functionally it
also tends to be limited to events recognized and reported by
health agencies (all outbreaks that we scored) and events of
less than 2 years duration (96.5% of outbreaks in our full data-
set of 4463 outbreaks). See online supplementary material
(electronic supplementary material, S2 Additional Methods)
for additional details of outbreak sampling procedures.

Those outbreaks we considered potentially zoonotic were
caused by pathogens that can be transmitted between animals
and humans (e.g.West Nile virus, hantavirus, Q fever), though
individual outbreaks included were often not of zoonotic
origin (e.g. most outbreaks of hepatitis E). We excluded oppor-
tunistic pathogens (e.g. Pneumocystis carinii, Aspergillus sp.),
but did include some diseases caused by both zoonotic and
non-zoonotic pathogens (e.g. tuberculosis). We focused on
viruses and bacteria because they are the broad taxa that
cause outbreaks most frequently (e.g. fewer than 10% of out-
breaks we considered including were caused by eukaryotic
parasites). We discuss the rationale for our criteria (electronic
supplementary material, table S2), including the inclusion of
‘borderline’ diseases such as tuberculosis and those of some
arboviruses, in the online supplementary materials (electronic
supplementary materials, S2.1 Diseases included and
excluded). In general, we included diseases classified as zoono-
tic byworking groups of the CDC [66], the UKHealthMinistry
[67] and the Pan American Health Organization [68].

In preliminary analysis, we found that many of the largest
outbreaks were from sparsely sampled time periods. For
instance, in the full dataset all but one of the ten outbreaks
from before 1800 were among the 100 largest, and more than
half of the largest outbreaks occurred in poorly documented
years (less than five recorded outbreaks) before the invention
of antibiotics. To understand contemporary outbreaks, we
focused onwell-characterized years with 20 or more documen-
ted outbreaks per year from 1974 to the present. Five of the
seven covariates that we used to characterize potential
sample bias (see below) could also be quantified throughout
this time interval.With this cut-off, we produced a final dataset
of 4463 contemporary outbreaks caused by zoonotic patho-
gens, within which we compared the putative drivers of the
100 largest (defined by minimum estimated number of cases)
to those of 200 random background or control outbreaks (elec-
tronic supplementary material, figure S1).

To score outbreaks,we compiled a list of 48potential drivers
based on factors discussed in reviews of zoonotic outbreak
literature [11,21,22,69]. Drivers were chosen to represent a
variety of phenomena including ecological, environmental
and socioeconomic factors (electronic supplementary material,
table S1). For each outbreak, drivers mentioned in sources
such as peer-reviewed publications cited in GIDEON [9], Mor-
bidity and Mortality Weekly Reports [70] and ProMed emails
[71] were noted. Each of the 48 drivers was then scored as
either not reported to contribute to an outbreak (0) or reported
as a likely contributing factor by at least one source (1). We
wished to quantify the frequency with which human–animal
contact and other factors appear to be proximate drivers of
large versus typical outbreaks of zoonotic diseases. Because
any outbreak in which human–animal contact did not appear
to be a factor would not be considered zoonotic in the strictest
sense, we refer to our data as ‘potentially zoonotic’ outbreaks.
(b) Statistical analyses
We conducted all analyses in R v. 4.0.0 [72]. We first ran con-
tingency table analysis, a permutation test of independence
implemented in the R package coin [73], to determine
whether the overall frequency of reported drivers differed
between large outbreaks and controls. Analyses excluded dri-
vers reported in less than 3% of outbreaks (i.e. found in fewer
than nine outbreaks); we observed no significant (α = 0.05)
differences in the frequency of such drivers between large
and background outbreaks. We repeated this analysis using
drivers found in at least 5% of outbreaks (15 or more out-
breaks), and then on the three drivers that differed the most
between large and background outbreaks.

We then conducted χ2 analyses of each individual driver to
determine when the frequency of a driver being associated
with an outbreak differed in top 100 versus background out-
breaks. We report the results of both multivariate analyses
testing differences in the overall driver profile of large and
background outbreaks, and univariate analyses that maximize
statistical power by focusing on individual drivers. In the
latter analyses, we highlight results still significant at α = 0.05
after applying a Bonferroni correction for 48 simultaneous
comparisons (only p-values < 0.001 are considered significant).

Finally, we investigated the potential impact of factors
reflecting differences in reporting effort, detection capabilities
and disease numbers (i.e. disease diversity and perhaps
prevalence or transmission rates) among countries. We refer
to these collectively as ‘sample bias covariates’ since we are
primarily interested in whether differences in the reported
drivers and pathogens of large versus background outbreaks
are statistically significant after accounting for their influence.
We do not mean to imply that variables such as human



Table 1. Contingency table analysis of drivers scored in the top 100 versus random background outbreaks. We considered 48 potential drivers, but many of
them were rarely observed in the outbreaks we scored. Cut-off lists the percentage of outbreaks that a driver needed to be scored in to be included in a given
contingency table analysis. Analyses are presented including and excluding covariates that have been found to confound patterns of disease occurrence and
reporting in past studies. ‘All covariates’ indicates analysis including drivers scored for each outbreak as well as the following variables for the country and year
in which an outbreak was reported: per capita GDP, Internet users per 100 individuals, phone lines per 100 individuals, press freedom, human population
density, human population (total) and latitude, whereas ‘1974 covariates’ indicates analyses in which Internet use and press freedom (which were only
measured after 1990) are excluded. ‘N’ indicates the number of rows of complete case data (see Methods for additional details).

cut-off predictors N χ2 p-value

3% or more (no covariates) 20 300 101.250 <0.0001

3% or more (1974 covariates) 20 + 5 290 47.075 <0.0001

3% or more (all covariates) 20 + 7 160 21.155 0.0017

5% or more (no covariates) 15 300 92.012 <0.0001

5% or more (1974 covariates) 15 + 5 290 47.076 <0.0001

5% or more (all covariates) 15 + 7 160 21.156 0.0017

top three (no covariates) 3 300 52.371 <0.0001

top three (1974 covariates) 3 + 5 290 47.069 <0.0001

top three (all covariates) 3 + 7 160 21.155 0.0017
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population density lack any functional relationship with out-
break size. Following a previous global study of disease
outbreak patterns [7], we used GDP, press freedom, Internet
use, population size, population density and latitude as cov-
ariates to control for sample bias. We also included the
number of phone subscriptions per hundred individuals, as
data were available for the entire time range our dataset cov-
ered and we would expect it to have a similar effect on
reporting to Internet use. Whenever possible, each of these
seven covariates was quantified for the year and country in
which an outbreak in our dataset was reported. Data for
most covariates come from the World Bank [12]. Latitude
was based on the latitudinal centroid of each country
included in our analyses [74]. (See electronic supplementary
material, dataset S3 for a full description of these data.)

Logistic regression models were run with and without
sample bias covariates. Due to differences in the time
ranges of covariates, and in the number of countries and
years for which data were available even within the time
ranges covered, sample sizes varied considerably. In models
with 300 or fewer observations, we were also concerned
that including too many predictor variables might inflate
rates of type II error [75]. To ensure that our qualitative
results were not unduly influenced by these factors, we
included results from a wide variety of logistic regression
models including (i) models with no sample bias covariates,
(ii) models with all covariates, (iii) models only including
covariates measured over the entire time range of outbreaks
in our study and (iv) models considering each covariate indi-
vidually. This led to a total of more than 370 models (see
electronic supplementary material, supplemental table
appendix). For the sake of brevity, we only report coefficients
of the relationship between the predictor of interest (either a
driver, pathogen type or transmission mode) and the
response variable.

(c) Pathogen characteristics
We also quantified variation in the biological and trans-
mission characteristics of diseases based on the identity of
their causative pathogens, or range of pathogens for diseases
that can be caused by multiple species. From standard veter-
inary and medical references [76–79], we determined whether
pathogens were viral or bacterial and their (non-exclusive)
modes of transmission (see electronic supplementary
material, dataset S1 for a full reference list). Definitions
used to score the transmission modes of pathogens followed
Antonovics et al. [80]. Vector-borne pathogens were those that
sometimes infect hosts through contact with an arthropod
vector such as a mosquito or tick. Directly transmitted patho-
gens were those that can be transmitted by close contact
between hosts, including but not limited to direct ecological
interactions (e.g. predation) and sexual transmission. Envir-
onmentally transmitted pathogens were those that can be
transmitted through contaminated soil or water, airborne
pathogens and/or fomites. We made no attempt to dis-
tinguish which mode of transmission was most prevalent in
any particular outbreak. We used χ2 analyses and multi-
variate logistic regression models, including and excluding
sample bias covariates, to test for differences in the character-
istics of pathogens causing large outbreaks versus controls.
3. Case study results and discussion
(a) Outbreak drivers
The driver profile of large outbreaks differed from that of
background outbreaks, regardless of the definition of the
background used (tables 1 and 2, figures 3 and 4; electronic
supplementary material, tables S3 and S4). More proximate
drivers were associated with larger outbreaks than controls
(electronic supplementary material, table S11). The mean
number of drivers was 3.19 for large outbreaks and 1.91 for
controls (random background outbreaks)—perhaps reflecting
a tendency for large outbreaks to be precipitated by
interactions (e.g. feedbacks) among multiple drivers.

Another notable result is that many drivers we considered
were implicated in very few outbreaks (table 3; electronic
supplementary material, tables S1 and S5). For example,



Table 2. Drivers that differed between large and random background outbreaks with a p-value < 0.1. The p-values for all other drivers were > 0.1. Rows in
italics indicate p < 0.05, rows in bold are still significant after applying Bonferroni correction for 48 independent comparisons (i.e. p < 0.001). Results for
variables not bolded often differed when models included covariates accounting for the attributes of countries where outbreaks occurred (see electronic
supplementary material, tables S13–S39).

driver ± top 100% background% χ2 p-value

change in reservoir abundance + 7 2 3.409 0.0648

war/conflict + 9 2.5 4.954 0.0260

human population density + 11 3 6.555 0.0105

antibiotics + 14 4 8.394 0.0038

water contamination + 40 20 12.633 0.0004

sewage management + 31 10 19.375 <0.0001

change in vector abundance + 21 3.5 22.103 <0.0001

weather conditions + 29 6.5 26.194 <0.0001

food contamination − 14 48 31.739 <0.0001

Table 3. Drivers rarely reported in outbreaks we scored. Number and
percentage refer to the random background outbreak data (N = 300). Note
that drivers rare in our sample could nevertheless be highly influential in
some disease systems (see text for example).

driver number percentage

aquaculture 0 0.00

irrigation 0 0.00

reforestation 0 0.00

urbanization 0 0.00

dam building 1 0.33

faminea 1 0.33

human demographic change 1 0.33

ineffective vaccine 1 0.33

introduced/invasive species 1 0.33

logging 1 0.33

road building 1 0.33

wildlife provisioning 1 0.33

change in reservoir distribution 2 0.67

co-infection 2 0.67

mining 2 0.67

change in vector control 3 1.00

immunosuppression 3 1.00

malnourishment 3 1.00

wetland cultivation 3 1.00
aPreliminary analyses showed that famine was a reported driver of several
large outbreaks prior to 1974.
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urbanization, logging and roadbuildingwere discussed as poss-
ible outbreak drivers in Gottdenker et al. [11], but were found in
at most one outbreak out of 300. Moreover, at least 20 drivers
(table 3; electronic supplementary material, table S5) played a
role in less than or equal to 1% of outbreaks. However, each
driver included in our list (electronic supplementary material,
table S1) has been discussed in reviews of the factors driving
modern outbreaks and/or emerging infectious diseases (e.g.
[11,22]) and is likely important in some systems. For example,
bushmeat consumption, capture andprocessingwas only impli-
cated as a driver in four outbreaks in our study, yet was
associated with disease spillover events that caused several
Ebola outbreaks [81–83], including at least one cluster of cases
with more than 200 fatalities [84]. In a follow-up study under-
way, we found bushmeat contributed to nearly 50% of Ebola
outbreaks [85]. Some drivers may have had low frequency in
our data due to systematic biases in the literature we used
to score outbreaks. Key sources (e.g. ProMed emails [71] and
Morbidity and Mortality Weekly Reports [70]) are primarily
written by clinicians rather than ecologists or sociologists.
Changes in reservoir abundance or demographic changes in
human populations may be less often considered by clinicians
than specialists in other disciplines.

Perhaps the most consistent qualitative characteristic of
the drivers of the largest outbreaks, such as weather con-
ditions and contamination of water supplies, was that they
operated over large scales (table 2; electronic supplementary
material, table S4), though we lacked a rigorous way to group
drivers into ‘broad-scale’ or ‘narrow-scale’ a priori. Further-
more, even a driver that often operates at small scales such
as food contamination [86] can affect a wide geographical
area under the right conditions [13], and many factors that
presumably generally operate at large spatial scales such as
changes in the geographical distribution of reservoirs and
urbanization were rarely reported as contributing to out-
breaks (table 3). Future studies could quantify the typical
spatial or temporal extent of different classes of outbreak dri-
vers to test directly for a correlation with the case numbers or
the size of regions affected.

Whether model results for a given driver were statistically
significant varied considerably depending upon the covari-
ates included and whether we used a truly random
background or only included outbreaks with typical case
numbers (electronic supplementary material, tables S13–
S39). However, results for four drivers were extremely
robust across model specifications (electronic supplementary
material, tables S15, S16, S25, S26, S28, S29, S38, S39), and
always statistically significant. Unusual weather patterns,
changes in vector abundance and water contamination,
usually representing contamination of water supplies, were
much more commonly found in large outbreaks than in



Table 4. Pathogen characteristics of large versus random background outbreaks. Type indicates whether the pathogen causing an outbreak was viral or
bacterial. Transmission indicates the transmission modes of a pathogen. The latter categories are not exclusive, some pathogens are transmitted by all three
modes. This table is primarily meant to summarize qualitative patterns of variation. Results for transmission modes varied considerably when analysed using
variables accounting for variation in the attributes of countries where outbreaks occurred (see electronic supplementary material, tables S40–S47).

type top 100% background % χ2 p-value

virus 58 17.5 49.245 <0.0001

transmission top 100% background % χ2 p-value

vector 27 11 11.345 0.0008

direct 55 72.5 8.417 0.0037

environmental 73 84.5 4.940 0.0269
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controls (table 2; electronic supplementary material, tables S4,

S15, S25, S26, S28, S38, S39). The importance of these eco-
environmental drivers is especially surprising given the
potential bias in our data sources towards clinical drivers.
The importance of changes in vector abundance is also some-
what surprising given that we excluded malaria from our
analyses. Frequently in large outbreaks, it was reported that
a month of unusually high rainfall caused a population
explosion of vectors such as mosquitoes, which led, in turn,
to many cases of vector-borne illness [87–89]. In fact, both
weather conditions and changes in vector abundance were
putative drivers of 16 of the 100 largest outbreaks. Poor
sewage management (including sewage system failures), in
part a socioeconomic factor, was also frequently recognized
as a driver of large outbreaks (table 2; electronic supplemen-
tary material, tables S4, S23, S36). Sewage management could
also be considered an environmental hazard, as it was a
contributing factor in roughly half of the cases involving
water contamination (electronic supplementary material,
tables S8 and S9).

Our results also imply that failures of societal and medical
resources may tend to be important in large outbreaks. War
or large-scale conflict was four times as likely to be found
among drivers of large compared to background outbreaks
(table 2; electronic supplementary material, table S4). Unsur-
prisingly, large outbreaks were more likely to start in areas of
unusually high human population density, possibly straining
social and medical resources. Antibiotic resistance was also
three times as frequent in large outbreaks, perhaps rendering
normal medical interventions ineffective. While intriguing,
patterns for war, population density and antibiotic resistance
were not as strongly supported ( p > 0.001; table 2), and
were often not statistically significant (α = 0.05) in analyses
including sample bias covariates (electronic supplementary
material, tables S13–S39).

(b) Pathogen characteristics
One might expect only a few common zoonotic pathogens
with high transmission rates such as salmonella [90], influ-
enza [91] and typhoid [92] to have the potential to cause
large outbreaks with thousands of cases. From this perspec-
tive, the diversity of diseases (n = 27) across the 100 largest
outbreaks was surprising. In a sample completely random
with respect to case numbers and twice as large we only
observed 33% more diseases (i.e. a sample of 200 outbreaks
from a global dataset included 35 diseases). This suggests
that specific pathogens with the potential to cause large
outbreaks will be hard to anticipate, though they did have a
tendency to be viral and use vector-borne transmission
more frequently than the diseases of background outbreaks
(table 4; electronic supplementary material, tables S10, S41,
S42, S45, S46). However, the relative frequency of diseases
was somewhat different between the two datasets (electronic
supplementary material, table S5). Typhoid (including enteric
fever) and shigellosis (dysentery) were among the five most
common diseases in both the background and top 100
outbreaks (electronic supplementary material, figure S2). By
contrast, the rest of the top five differed considerably, with
three bacterial diseases (salmonellosis, anthrax and tuberculo-
sis) and three viral diseases (hepatitis E, influenza and
Japanese encephalitis) rounding out the background and top
100, respectively. Perhaps related to the high frequency of
anthrax and salmonellosis, food contamination was much
more commonly found to be a driver in the background
than in large outbreaks (table 2; electronic supplementary
material, tables S3, S16, S29).

The overall biological profile (taxonand transmissionmodes)
of pathogens that cause large outbreaks was also different from
that of controls (table 4; electronic supplementary material,
table S10). Large outbreaks were more likely to be caused by
viral than bacterial pathogens (table 4; electronic supplementary
material, figure S3 and tables S10, S40, S44), possibly because
widespread use of antibiotics in modern times has often been
effective in preventing large bacterial outbreaks. Two lines
of evidence support this interpretation. First, antibiotic resistance
was a more frequent driver of large outbreaks than controls
(table 2; electronic supplementary material, tables S4, S13, S27).
Second, in preliminary analyses including outbreaks from
before the invention of antibiotics, bacterial pathogens were
muchmore common in large outbreaks.Among the 18 large out-
breaks from before 1930 (treating the 1918–1919 worldwide flu
pandemic as a single outbreak), 14 were caused by bacterial
pathogens.

Results related to transmission mode were less clear.
Vector-borne transmission was overall the least common trans-
missionmode, butwasmuchmore common among pathogens
of large outbreaks versus controls (table 4) despite the exclu-
sion of malaria from our study. The pathogens causing large
outbreaks also relied on direct and environmental transmission
less frequently than those found in background outbreaks
(table 4), but environmental transmission was still the most
common transmission mode used by pathogens in both sets
of outbreaks. However, directly transmitted pathogens
caused greater than 50% of both large and background
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Figure 3. Frequency of diseases and outbreak drivers in a sample of 200 ‘background’ outbreaks. Bipartite network relating diseases to causal drivers of the back-
ground outbreaks. Percentages and widths indicate the relative number of outbreaks for each disease and driver. Colours are purely for illustrative purposes, to help
visualize the relative contribution of different drivers to different diseases.
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outbreaks. None of the differences in the frequency of trans-
mission modes were significant in models including
variation in per capita numbers of phone lines (electronic sup-
plementary material, tables S41–43, S45–47), suggesting
reporting bias affected the outcome of these analyses. One
possibility is that key diseases (e.g. vector-borne diseases) get
reported less frequently in countries with poor communication
infrastructure, generating an apparent relationship in analyses
that do not take it into account (table 4).

(c) Case study conclusions
Overall, our findings show that the profile of a large out-
break that escapes control and includes thousands of
cases differs considerably from that of a more typical
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outbreak. Water contamination was the most common
driver of large outbreaks (median number of cases:
7933.5), followed by poor sewage management, unusual
weather conditions and changes in vector abundance
(figure 4, table 2; electronic supplementary material, table
S4). Pathogens that caused large outbreaks tended to be
viral, were more likely vector-borne, and less likely to be
transmitted directly or environmentally (table 4; electronic
supplementary material, table S10). Among background
cases (median number of cases in background outbreaks:
42.5), food contamination was the most common driver, fol-
lowed by water contamination, local livestock production
and human–animal contact (figure 3). Pathogens causing
these outbreaks tended to be bacterial and were consider-
ably less likely to be vector-borne (table 4; electronic
supplementary material, table S10, figure S3). Importantly,
these results were not driven by the higher frequency of
outbreaks caused by Salmonella in controls versus large
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outbreaks (electronic supplementary material, tables S6
and S7).
oyalsocietypublishing.org/journal/rstb
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4. Implications for future work
(a) Sample bias and quantifying outbreak drivers
We show that important insights can be gained by applying a
simple driver schema (electronic supplementarymaterial, table
S1) to global outbreak data. However, one of our primary
results, that large outbreaks tend to have more proximate dri-
vers than background outbreaks (electronic supplementary
material, table S11), could at least be partially driven by inves-
tigator bias. It is expected that more research attention will
focus on large outbreaks, particularly those with many fatal-
ities, great economic consequences, or other dramatic effects.
It is thus possible that the factors driving large outbreaks
tend to be more fully documented than those of background
outbreaks, which tend to be smaller even when chosen fully
at random (electronic supplementary material, figure S1).
Undoubtedly, in at least some cases, the factors influencing out-
breaks are straightforward, and some outbreaks would have
fewer drivers noted regardless of the study effort applied to
them. For example, an outbreak of food poisoning with less
than a dozen cases traced to one batch of food in a particular
household [93] almost certainly has fewer proximate drivers
than the 2009–2010 worldwide flu pandemic [15]. We also
confirmed that neither differences in numbers of drivers (elec-
tronic supplementary material, table S11) nor all differences in
the frequency of drivers (electronic supplementary material,
tables S13–S40) resulted from patterns of expected disease
frequency or reporting bias [7] across years and countries.

However, results for some drivers, such as armed conflicts
(electronic supplementary material, tables S24 and S37),
changes in reservoir abundance (electronic supplementary
material, table S14) and industrial livestock production (elec-
tronic supplementary material, tables S18 and S31) often
varied depending on the covariates considered. Thus,
between-country differences in resources (e.g. GDP), human
demographics (e.g. total population and population density),
communication infrastructure (e.g. phone lines and Internet
users in our study) and expected disease diversity (e.g. lati-
tude) are important to control for in any global analysis of
outbreak characteristics. For the most part, we considered the
same covariates included in a previous study of global trends
in outbreak frequency [7]. However, we also included per
capita numbers of phone lines [12], and this proved to vary
more strongly between large and background outbreaks than
any other covariate we considered (electronic supplementary
material, table S11). We speculate that the negative correlation
we observed between the chances that an outbreakwas among
the top 100 and numbers of phone lines (electronic supplemen-
tary material, table S11) reflects a tendency for smaller
outbreaks to be detected and reported more frequently in
countries with robust communication infrastructure, and thus
a bias in the distribution of background cases (figure 2a).
Regardless, many of our results proved to be robust to the
effects of this and other sample biasmeasures (e.g. table 1; elec-
tronic supplementary material, tables S11, S15, S16, S23, S25,
S26, S28, S29, S36, S38, S39).

The numberof years and countries forwhich each covariate
could be quantified varied greatly. Our measure of press free-
domhas only been tracked since 2001 [94] and Internet usewas
effectively zero inmost countries before the very late 1980s [95].
Even for well-sampled variables, data for a few (less than three)
rows were often unavailable and did not match up between
covariates, further reducing sample sizes in complete case
models. Therefore, to maximize the statistical power of
models, we ran models with different combinations of better-
sampled covariates (e.g. electronic supplementary material,
tables S13–S47). For this case study, we relied on statistical
methods (e.g. logistic regression and χ2) that we assumed
would be familiar to most readers. Future studies could
employ boosted regression trees [96] or other methods that
do not require complete case analysis, or could imputemissing
data values [97].

Number of physicians, hospitals, or health spending as a
percentage of GDP might more directly reflect healthcare
resources and disease reporting. However, data on these vari-
ables were too limited temporally and geographically to be
useful for global analyses, at least from current publicly avail-
able sources [12]. Future large-scale studies might focus on
areas such as Europe and North America where data for
these variables are more often available. Another alternative
approach would be to focus on patterns in individual
countries in which many outbreaks have been reported. For
example, in the global dataset that we sampled there were
786 rows from the US and 292 rows from India.
(b) Different study systems and related questions
We considered only potentially zoonotic outbreaks of viral
and bacterial pathogens. Outbreaks of protozoal diseases
such as malaria and of human pathogens such as HIV/
AIDs are at least as much of a health concern as the diseases
we consider here [10], and more quantitative studies of the
factors that commonly drive them are badly needed. One of
the reasons that we focused on zoonotic pathogens is that a
greater range of drivers are likely potentially relevant to
them. For example, we expect that human–animal contact,
deforestation and bushmeat consumption play little role in
pathogens maintained almost entirely by human-to-human
transmission such as dengue [98] or sexually transmitted dis-
ease such as syphilis [99]. However, this is not to imply that
outbreaks of such diseases [100–102] are of less interest.

We derived a dataset of outbreaks from the information
included in GIDEON [9]. However, the data that we could
extract directly from this source was often limited, and the
additional information that was available in reviews or compi-
lations focused on specific pathogens (e.g. [103,104]) varied
widely. We found we could always assign an outbreak to a
country and a range of years. However, of 8431 outbreaks
that we originally considered (see electronic supplementary
material, table S2 for pathogens included), number of cases
was only available for 4930 (fewer when limited to those
after 1973), and deaths were only reported for 1534. In most
outbreaks, no information on drivers was available. We thus
had to investigate the reported drivers of each outbreak by
intensive searches of primary literature. This was one reason
why we chose to compare the tail of the outbreak distribution
to a random sample of the rest. It allowed us to address a ques-
tion we thought would be of considerable interest while only
scoring a few hundred outbreaks (i.e. the hundred largest
and a comparable sample of the background).

Our overarching study goal was to characterize the driver
and pathogen profiles of the largest zoonotic outbreaks in
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recent history. However, we used a case-control framework to
do this, an approach with some limitations [105,106]. Another
way to investigate variation in outbreak severity would be to
consider outbreak size or mortality as a continuous variable.
The factors associatedwith the largest outbreaks could be simi-
lar to or distinct from those drivingdifferences in the number of
cases or deaths. Future studies could build statistical models to
better understand the overall variation in outbreak size.
Studies have attempted to predict the size of outbreaks of indi-
vidual diseases based on properties of human pathogen
networks, initial host population sizes or pathogen transmissi-
bility [107–109]. However, no studies of which we are aware
have included variation in outbreak drivers in models or
looked at realized outbreak sizes across large numbers of dis-
eases to test for general relationships. We consider this an
important but distinct question from the one we focused on.

We also believe that building accurate statistical models of
outbreak severity as a continuous response variable would
require driver data for many more outbreaks than we present
here. Given the transmission characteristics of different
pathogens [80], the factors that tend to drive outbreaks of
any given disease likely vary considerably. For example, in
a comprehensive study of filovirus outbreaks currently
underway [85], we found that socioeconomic factors such
as poverty and degraded health infrastructure are much
more important in filovirus outbreaks [103] than outbreaks
included in the current study. Similarly, the factors contribut-
ing to variation in outbreak size likely vary among other
diseases. To accurately characterize patterns of variation in
case numbers, it would likely be necessary to build statistical
models of the driver profile of outbreaks within versus across
diseases and regions. This might require data on the profiles
of thousands of outbreaks for a truly global analysis includ-
ing many diseases. Other response variables such as
mortality [110,111] or economic impact [111,112] might also
be of more interest than the case number for many questions.

The dataset fromwhich we sampled outbreaks would likely
be sufficient for a global analysis of case numbers if the drivers
of every outbreak (n = 4463 with reported numbers) were
scored. However, scoring so many records using the methods
we employed would have required us to review tens of thou-
sands of primary references. Machine learning methods such
as natural language processing (NLP) [113] and neural joint
models [114] might be used to help automate this process.
Data similar to what we present might be useful for parameter-
izing models based on the text passages used to score drivers of
outbreaks. ThoughNLP is not yet widely used inmacroecology,
it has been successfully used to build databases of host–parasite
association in previous studies [115,116]. Broader use of NLP
and related machine learning methods (e.g. [117,118]) to gener-
ate more detailed and complete databases of outbreak
characteristics represents an exciting avenue for future work.
The key to leveraging such data effectively will be more colla-
borative work where statistical models are co-produced by
experts in environmental and socioeconomic drivers,
stakeholder issues and policy (e.g. [119,120]).
5. Conclusion
In a future in which large zoonotic disease outbreaks will
almost certainly continue to occur regularly (figure 1), a
better general understanding of the factors affecting variation
in the severity of outbreaks is critical to the wellbeing of the
global community. Here, we present proof-of-concept work
comparing the drivers of the largest outbreaks in a global data-
set of zoonotic bacterial and viral pathogen outbreaks to
similar background outbreaks. We find the driver and patho-
gen profile of the largest outbreaks varies considerably from
two sets of generally smaller (in terms of case numbers)
random background outbreaks, a result that proved extremely
robust. We discuss many of the challenges inherent in macroe-
cological studies of outbreak dynamics. Data on disease or
outbreak occurrences that spans the globe will undoubtedly
be somewhat biased by large differences in reporting effort
and detection capabilities among countries, and over time.
We suggest that a promising way forward will be via more
comprehensive studies that consider number of cases or other
outcomes (e.g. mortality, duration, region affected, economic
impact) as continuous variables.

Data accessibility. All statistical analyses were conducted using base
functions in R and the coin library. Data used for analyses are
included in this submission as electronic supplementary material,
datasets S1–S4.

Authors’ contributions. All authors conceived of the study. J.P.S. and
A.M.S. compiled initial outbreak data based on GIDEON. N.G.,
A.M.S., J.P.S. and P.R.S. collected outbreak data included in the
study, designed the driver schema and scored outbreak drivers.
N.G. collected pathogen data. J.P.S. and P.R.S. created figures.
P.R.S. performed statistical analyses. All authors contributed to writ-
ing the manuscript (P.R.S. drafted early versions).

Competing interests. The authors declare that they have no competing
interests.
Funding. This work was supported by the NSF (DEB 1316223, Research
Coordination Network: Macroecology of Infectious Diseases, P.R.S.),
NIH (R01Al156866, Spillover of Ebola and Other Filoviruses at Eco-
logical Boundaries, P.R.S., J.M.D., N.G., J.P.S.) and the UGA
President’s Interdisciplinary Seed Grant Programme (all authors).
Acknowledgements. We thank the members of the UGA Center for the
Ecology of Infectious Disease and Macroecology of Infectious Disease
Research Coordination Network and for useful feedback during the
course of study, and are grateful to our associate editor Shan
Huang and two anonymous reviewers for critiques that greatly
improve the manuscript.
References
1. Lozano R et al. 2012 Global and regional mortality
from 235 causes of death for 20 age groups in 1990
and 2010: a systematic analysis for the Global
Burden of Disease Study 2010. Lancet 380,
2095–2128. (doi:10.1016/S0140-6736(12)61728-0)

2. Morse SS, Mazet JA, Woolhouse M, Parrish CR,
Carroll D, Karesh WB, Zambrana-Torrelio C, Lipkin
WI, Daszak P. 2012 Prediction and prevention of the
next pandemic zoonosis. Lancet 380, 1956–1965.
(doi:10.1016/S0140-6736(12)61684-5)

3. Heard MJ, Smith KF, Ripp KJ, Berger M,
Chen J, Dittmeier J, Goter M, Mcgarvey ST,
Ryan E. 2013 The threat of disease
increases as species move toward extinction.
Conserv. Biol. 27, 1378–1388. (doi:10.1111/
cobi.12143)

4. Cohen ML. 1998 Resurgent and emergent
disease in a changing world. Br. Med. Bull. 54,
523–532. (doi:10.1093/oxfordjournals.bmb.a011707)

5. Smith KF, Sax DF, Gaines SD, Guernier V,
Guégan JF. 2007 Globalization of human infectious

http://dx.doi.org/10.1016/S0140-6736(12)61728-0
http://dx.doi.org/10.1016/S0140-6736(12)61684-5
http://dx.doi.org/10.1111/cobi.12143
http://dx.doi.org/10.1111/cobi.12143
http://dx.doi.org/10.1093/oxfordjournals.bmb.a011707


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200535

12

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 S

ep
te

m
be

r 
20

21
 

disease. Ecology 88, 1903–1910. (doi:10.1890/06-
1052.1)

6. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D,
Gittleman JL, Daszak P. 2008 Global trends in
emerging infectious diseases. Nature 451, 990–993.
(doi:10.1038/nature06536)

7. Smith KF, Goldberg M, Rosenthal S, Carlson L, Chen
J, Chen C, Ramachandran S. 2014 Global rise in
human infectious disease outbreaks. J. R. Soc.
Interface 11, 20140950. (doi:10.1098/rsif.2014.0950)

8. Murray KA, Preston N, Allen T, Zambrana-Torrelio C,
Hosseini PR, Daszak P. 2015 Global biogeography of
human infectious diseases. Proc. Natl Acad. Sci. USA
112, 12 746–12 751. (doi:10.1073/pnas.
1507442112)

9. Berger S. 2017 GIDEON guide to outbreaks. Los
Angeles, CA: Global Ecology and Infectious Disease
Network.

10. Murray CJ et al. 2012 Disability-adjusted life years
(DALYs) for 291 diseases and injuries in 21 regions,
1990–2010: a systematic analysis for the Global
Burden of Disease Study 2010. Lancet 380,
2197–2223. (doi:10.1016/S0140-6736(12)61689-4)

11. Gottdenker NL, Streicker DG, Faust CL, Carroll C.
2014 Anthropogenic land use change and infectious
diseases: a review of the evidence. EcoHealth 11,
619–632. (doi:10.1007/s10393-014-0941-z)

12. World Bank. 2021 World Bank Open Data. https://
data.worldbank.org/ (accessed 1 May 2021).

13. Ryan CA et al. 1987 Massive outbreak of
antimicrobial-resistant salmonellosis traced to
pasteurized milk. J. Am. Med. Assoc. 258,
3269–3274. (doi:10.1001/jama.1987.
03400220069039)

14. Dawood FS et al. 2012 Estimated global mortality
associated with the first 12 months of 2009
pandemic influenza A H1N1 virus circulation: a
modelling study. Lancet Infect. Dis. 12, 687–695.
(doi:10.1016/S1473-3099(12)70121-4)

15. Fineberg HV. 2014 Pandemic preparedness and
response—lessons from the H1N1 influenza of
2009. New Engl. J. Med. 370, 1335–1342. (doi:10.
1056/NEJMra1208802)

16. Dong E, Du H, Gardner L. 2020 An interactive web-
based dashboard to track COVID-19 in real time.
Lancet Infect. Dis. 20, 533–534. (doi:10.1016/
S1473-3099(20)30120-1)

17. Stephens PR et al. 2016 The macroecology of
infectious diseases: a new perspective on global-
scale drivers of pathogen distributions and impacts.
Ecol. Lett. 19, 1159–1171. (doi:10.1111/ele.12644)

18. Dunn RR, Davies TJ, Harris NC, Gavin MC. 2010
Global drivers of human pathogen richness and
prevalence. Proc. R. Soc. B 277, 2587–2595. (doi:10.
1098/rspb.2010.0340)

19. Han BA, Kramer AM, Drake JM. 2016 Global
patterns of zoonotic disease in mammals.
Trends Parasitol. 32, 565–577. (doi:10.1016/j.pt.
2016.04.007)

20. Pappalardo P, Morales-Castilla I, Park AW, Huang S,
Schmidt JP, Stephens PR. 2020 Comparing methods
for mapping global parasite diversity. Glob. Ecol.
Biogeogr. 29, 182–193. (doi:10.1111/geb.13008)
21. Oaks JS, Shope RE, Lederberg J. 1992 Emerging
infections: microbial threats to health in the United
States. Washington, DC: National Academies Press.

22. Lederberg J, Hamburg MA, Smolinski MS. 2003
Microbial threats to health: emergence, detection,
and response. Washington, DC: National Academies
Press.

23. Jones BA et al. 2013 Zoonosis emergence linked to
agricultural intensification and environmental
change. Proc. Natl Acad. Sci. USA 110, 8399–8404.
(doi:10.1073/pnas.1208059110)

24. Patz JA et al. 2004 Unhealthy landscapes: policy
recommendations on land use change and
infectious disease emergence. Environ. Health Persp.
112, 1092–1098. (doi:10.1289/ehp.6877)

25. Patz JA, Olson SH, Uejio CK, Gibbs HK. 2008 Disease
emergence from global climate and land use
change. Med. Clin. N. Am. 92, 1473–1491. (doi:10.
1016/j.mcna.2008.07.007)

26. Wilkinson DA, Marshall JC, French NP, Hayman DT.
2018 Habitat fragmentation, biodiversity loss and
the risk of novel infectious disease emergence.
J. R. Soc. Interface 15, 20180403. (doi:10.1098/rsif.
2018.0403)

27. Schmeller DS, Courchamp F, Killeen G. 2020
Biodiversity loss, emerging pathogens and human
health risks. Berlin, Germany: Springer.

28. Daszak P, Cunningham AA, Hyatt AD. 2001
Anthropogenic environmental change and the
emergence of infectious diseases in wildlife. Acta
Trop. 78, 103–116. (doi:10.1016/S0001-
706X(00)00179-0)

29. Grace D et al. 2012 Mapping of poverty and likely
zoonoses hotspots. Nairobi, Kenya: ILRI. https://
cgspace.cgiar.org/bitstream/handle/10568/21161/
ZooMap_July2012_final.pdf?sequence=
4&embedded=true (accessed 25 August 2021).

30. Molyneux D et al. 2011 Zoonoses and marginalised
infectious diseases of poverty: where do we
stand? Parasite Vector 4, 106. (doi:10.1186/1756-
3305-4-106)

31. Wu T. 2021 The socioeconomic and environmental
drivers of the COVID-19 pandemic: a review. Ambio
50, 822–833. (doi:10.1007/s13280-020-01497-4)

32. Zachreson C, Fair KM, Cliff OM, Harding N,
Piraveenan M, Prokopenko M. 2018 Urbanization
affects peak timing, prevalence, and bimodality of
influenza pandemics in Australia: results of a
census-calibrated model. Sci. Adv. 4, eaau5294.
(doi:10.1126/sciadv.aau5294)

33. Leung GM, Nicoll A. 2010 Reflections on pandemic
(H1N1) 2009 and the international response. PLoS
Med. 7, e1000346. (doi:10.1371/journal.pmed.
1000346)

34. Nohrstedt D, Baekkeskov E. 2018 Political drivers of
epidemic response: foreign healthcare workers and
the 2014 Ebola outbreak. Disasters 42, 41–61.
(doi:10.1111/disa.12238)

35. Larison B, Njabo KY, Chasar A, Fuller T, Harrigan RJ,
Smith TB. 2014 Spillover of pH1N1 to swine in
Cameroon: an investigation of risk factors.
BMC Vet. Res. 10, 1–8. (doi:10.1186/1746-6148-10-
55)
36. Schmidt JP, Park AW, Kramer AM, Han BA,
Alexander LW, Drake JM. 2017 Spatiotemporal
fluctuations and triggers of Ebola virus spillover.
Emerg. Infect. Dis. 23, 415. (doi:10.3201/eid2303.
160101)

37. Ribeiro J, Staudacher C, Martins CM, Ullmann LS,
Ferreira F, Araujo JP, Biondo AW. 2018 Bat rabies
surveillance and risk factors for rabies spillover in an
urban area of Southern Brazil. BMC Vet. Res. 14,
1–8. (doi:10.1186/s12917-018-1485-1)

38. Olivero J et al. 2017 Recent loss of closed forests is
associated with Ebola virus disease outbreaks. Sci.
Rep. 7, 1–9. (doi:10.1038/s41598-016-0028-x)

39. Olivero J, Fa JE, Real R, Farfán MÁ, Márquez AL,
Vargas JM, Gonzalez JP, Cunningham AA, Nasi R.
2017 Mammalian biogeography and the Ebola virus
in Africa. Mammal Rev. 47, 24–37. (doi:10.1111/
mam.12074)

40. Shapiro JT, Sovie AR, Faller CR, Monadjem A,
Fletcher RJ, McCleery RA. 2020 Ebola spillover
correlates with bat diversity. Eur. J. Wildl. Res. 66,
1–12. (doi:10.1007/s10344-019-1346-7)

41. Lee JW, McKibbin WJ. 2004 Globalization and
disease: the case of SARS. Asian Econ. Pap. 3,
113–131. (doi:10.1162/1535351041747932)

42. Castillo-Chavez C, Curtiss R, Daszak P, Levin SA,
Patterson-Lomba O, Perrings C, Poste G, Towers S.
2015 Beyond Ebola: lessons to mitigate future
pandemics. Lancet Glob. Health 3, e354–e355.
(doi:10.1016/S2214-109X(15)00068-6)

43. Alvar J, Yactayo S, Bern C. 2006 Leishmaniasis and
poverty. Trends Parasitol. 22, 552–557. (doi:10.
1016/j.pt.2006.09.004)

44. Fürst T, Raso G, Acka CA, Tschannen AB, N’Goran EK,
Utzinger J. 2009 Dynamics of socioeconomic risk
factors for neglected tropical diseases and malaria
in an armed conflict. PLoS Negl. Trop. Dis. 3, e513.
(doi:10.1371/journal.pntd.0000513)

45. Sissoko D, Ezzedine K, Moendandzé A, Giry C,
Renault P, Malvy D. 2010 Field evaluation of clinical
features during chikungunya outbreak in Mayotte,
2005–2006. Trop. Med. Int. Health 15, 600–607.
(doi:10.1111/j.1365-3156.2010.02485.x)

46. Alsan MM, Westerhaus M, Herce M, Nakashima K,
Farmer PE. 2011 Poverty, global health, and
infectious disease: lessons from Haiti and Rwanda.
Infect. Dis. Clin. N. Am. 25, 611. (doi:10.1016/j.idc.
2011.05.004)

47. Fallah MP, Skrip LA, Gertler S, Yamin D, Galvani AP.
2015 Quantifying poverty as a driver of Ebola
transmission. PLoS Negl. Trop. Dis. 9, e0004260.
(doi:10.1371/journal.pntd.0004260)

48. Shoman H, Karafillakis E, Rawaf S. 2017 The link
between the West African Ebola outbreak and
health systems in Guinea, Liberia and Sierra Leone:
a systematic review. Glob. Health 13, 1–22. (doi:10.
1186/s12992-016-0224-2)

49. Wells CR, Pandey A, Mbah MLN, Gaüzère BA, Malvy
D, Singer BH, Galvani AP. 2019 The exacerbation of
Ebola outbreaks by conflict in the Democratic
Republic of the Congo. Proc. Natl Acad. Sci. USA
116, 24 366–24 372. (doi:10.1073/pnas.
1913980116)

http://dx.doi.org/10.1890/06-1052.1
http://dx.doi.org/10.1890/06-1052.1
http://dx.doi.org/10.1038/nature06536
http://dx.doi.org/10.1098/rsif.2014.0950
http://dx.doi.org/10.1073/pnas.1507442112
http://dx.doi.org/10.1073/pnas.1507442112
http://dx.doi.org/10.1016/S0140-6736(12)61689-4
http://dx.doi.org/10.1007/s10393-014-0941-z
https://data.worldbank.org/
https://data.worldbank.org/
http://dx.doi.org/10.1001/jama.1987.03400220069039
http://dx.doi.org/10.1001/jama.1987.03400220069039
http://dx.doi.org/10.1016/S1473-3099(12)70121-4
http://dx.doi.org/10.1056/NEJMra1208802
http://dx.doi.org/10.1056/NEJMra1208802
http://dx.doi.org/10.1016/S1473-3099(20)30120-1
http://dx.doi.org/10.1016/S1473-3099(20)30120-1
http://dx.doi.org/10.1111/ele.12644
http://dx.doi.org/10.1098/rspb.2010.0340
http://dx.doi.org/10.1098/rspb.2010.0340
http://dx.doi.org/10.1016/j.pt.2016.04.007
http://dx.doi.org/10.1016/j.pt.2016.04.007
http://dx.doi.org/10.1111/geb.13008
http://dx.doi.org/10.1073/pnas.1208059110
http://dx.doi.org/10.1289/ehp.6877
http://dx.doi.org/10.1016/j.mcna.2008.07.007
http://dx.doi.org/10.1016/j.mcna.2008.07.007
http://dx.doi.org/10.1098/rsif.2018.0403
http://dx.doi.org/10.1098/rsif.2018.0403
http://dx.doi.org/10.1016/S0001-706X(00)00179-0
http://dx.doi.org/10.1016/S0001-706X(00)00179-0
https://cgspace.cgiar.org/bitstream/handle/10568/21161/ZooMap_July2012_final.pdf?sequence=4&embedded=true
https://cgspace.cgiar.org/bitstream/handle/10568/21161/ZooMap_July2012_final.pdf?sequence=4&embedded=true
https://cgspace.cgiar.org/bitstream/handle/10568/21161/ZooMap_July2012_final.pdf?sequence=4&embedded=true
https://cgspace.cgiar.org/bitstream/handle/10568/21161/ZooMap_July2012_final.pdf?sequence=4&embedded=true
http://dx.doi.org/10.1186/1756-3305-4-106
http://dx.doi.org/10.1186/1756-3305-4-106
http://dx.doi.org/10.1007/s13280-020-01497-4
http://dx.doi.org/10.1126/sciadv.aau5294
http://dx.doi.org/10.1371/journal.pmed.1000346
http://dx.doi.org/10.1371/journal.pmed.1000346
http://dx.doi.org/10.1111/disa.12238
http://dx.doi.org/10.1186/1746-6148-10-55
http://dx.doi.org/10.1186/1746-6148-10-55
http://dx.doi.org/10.3201/eid2303.160101
http://dx.doi.org/10.3201/eid2303.160101
http://dx.doi.org/10.1186/s12917-018-1485-1
http://dx.doi.org/10.1038/s41598-016-0028-x
http://dx.doi.org/10.1111/mam.12074
http://dx.doi.org/10.1111/mam.12074
http://dx.doi.org/10.1007/s10344-019-1346-7
http://dx.doi.org/10.1162/1535351041747932
http://dx.doi.org/10.1016/S2214-109X(15)00068-6
http://dx.doi.org/10.1016/j.pt.2006.09.004
http://dx.doi.org/10.1016/j.pt.2006.09.004
http://dx.doi.org/10.1371/journal.pntd.0000513
http://dx.doi.org/10.1111/j.1365-3156.2010.02485.x
http://dx.doi.org/10.1016/j.idc.2011.05.004
http://dx.doi.org/10.1016/j.idc.2011.05.004
http://dx.doi.org/10.1371/journal.pntd.0004260
http://dx.doi.org/10.1186/s12992-016-0224-2
http://dx.doi.org/10.1186/s12992-016-0224-2
http://dx.doi.org/10.1073/pnas.1913980116
http://dx.doi.org/10.1073/pnas.1913980116


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200535

13

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 S

ep
te

m
be

r 
20

21
 

50. Lal A, Ashworth HC, Dada S, Hoemeke L, Tambo E.
2020 Optimizing pandemic preparedness and
response through health information systems:
lessons learned from Ebola to COVID-19. Disaster
Med. Public Health Prep. 14, 1–8. (doi:10.1017/
dmp.2020.361)

51. Chan EH et al. 2010 Global capacity for emerging
infectious disease detection. Proc. Natl Acad. Sci.
USA 107, 21 701–21 706. (doi:10.1073/pnas.
1006219107)

52. Guernier V, Hochberg ME, Guégan JF, Harvey P.
2004 Ecology drives the worldwide distribution of
human diseases. PLoS Biol. 2, e141. (doi:10.1371/
journal.pbio.0020141)

53. Wilson K, Brownstein JS. 2009 Early detection of
disease outbreaks using the Internet. Can. Med.
Assoc. J. 180, 829–831. (doi:10.1503/cmaj.
1090215)

54. McAlarnen L, Smith K, Brownstein JS, Jerde C. 2014
Internet and free press are associated with reduced
lags in global outbreak reporting. PLoS Curr. 6.
(doi:10.1371/currents.outbreaks.
cecdec16fa17091eea4c4a725dba9e16)

55. Bonds MH, Keenan DC, Rohani P, Sachs JD. 2010
Poverty trap formed by the ecology of infectious
diseases. Proc. R. Soc. B 277, 1185–1192. (doi:10.
1098/rspb.2009.1778)

56. Bhutta ZA, Sommerfeld J, Lassi ZS, Salam RA, Das
JK. 2014 Global burden, distribution, and
interventions for infectious diseases of poverty.
Infect. Dis. Poverty 3, 1–7. (doi:10.1186/2049-9957-
3-1)

57. Elistia E, Syahzuni BA. 2018 The correlation of the
human development index (HDI) towards economic
growth (GDP per capita) in 10 ASEAN member
countries. J. Humanit. Soc. Stud. 2, 40–46. (doi:10.
33751/jhss.v2i2.949)

58. Kluberg SA, Mekaru SR, McIver DJ, Madoff LC,
Crawley AW, Smolinski MS, Brownstein JS. 2016
Global capacity for emerging infectious disease
detection, 1996–2014. Emerg. Infect. Dis. 22,
E1–E6. (doi:10.3201/eid2210.151956)

59. McCallum H, Barlow N, Hone J. 2001 How should
pathogen transmission be modelled? Trends Ecol.
Evol. 16, 295–300. (doi:10.1016/S0169-
5347(01)02144-9)

60. Fick SE, Hijmans RJ. 2017 WorldClim 2: new 1-km
spatial resolution climate surfaces for global land
areas. Int. J. Climatol. 37, 4302–4315. (doi:10.1002/
joc.5086)

61. Martins PM, Poulin R, Gonçalves-Souza T. 2021
Integrating climate and host richness as drivers of
global parasite diversity. Glob. Ecol. Biogeogr. 30,
196–204. (doi:10.1111/geb.13213)

62. Davies TJ, Buckley LB, Grenyer R, Gittleman JL. 2011
The influence of past and present climate on the
biogeography of modern mammal diversity.
Proc. R. Soc. B 366, 2526–2535. (doi:10.1098/rstb.
2011.0018)

63. Jarzyna MA, Quintero I, Jetz W. 2021 Global
functional and phylogenetic structure of avian
assemblages across elevation and latitude. Ecol.
Lett. 24, 196–207. (doi:10.1111/ele.13631)
64. Guégan JF, Morand S, Poulin R. 2005 Are there
general laws in parasite community ecology?
The emergence of spatial parasitology and
epidemiology. In Parasitism and ecosystems (eds
F Thomas, F Renaud, J-F Guégan), pp. 22–42.
Oxford, UK: Oxford University Press.

65. Wu T, Perrings C, Kinzig A, Collins JP, Minteer BA,
Daszak P. 2017 Economic growth, urbanization,
globalization, and the risks of emerging infectious
diseases in China: a review. Ambio 46, 18–29.
(doi:10.1007/s13280-016-0809-2)

66. CDC. 2021 One Health: completed OHZDP workshops.
https://www.cdc.gov/onehealth/what-we-do/
zoonotic-disease-prioritization/completed-
workshops.html (accessed 1 August 2021).

67. UK Public Health England. 2019 List of zoonotic
diseases. https://www.gov.uk/government/
publications/list-of-zoonotic-diseases/list-ofzoonotic-
diseases,selected-zoonotic-diseases-exoticto-the-uk
(accessed 1 August 2021).

68. Dubinsk ÝP. 2005 Zoonoses and communicable
diseases common to man and animals. By PN Acha
and B. Szyfres. Vol. 1. Bacterioses and mycoses,
pp. 378; Vol. 2. Chlamydioses, rickettsioses and
viroses, pp. 408; Vol. 3. Parasitoses, pp. 395. Pan
American Health Organisation, Washington, DC,
2003. ISBN 92 75 11991. Parasitology 131,
580–581.

69. Kilpatrick AM, Randolph SE. 2012 Drivers, dynamics,
and control of emerging vector-borne zoonotic
diseases. Lancet 380, 1946–1955. (doi:10.1016/
S0140-6736(12)61151-9)

70. CDC. 2017 Morbidity and mortality weekly report.
Atlanta, GA: Centers for Disease Control.

71. Yu VL, Madoff LC. 2004 ProMED-mail: an early
warning system for emerging diseases. Clin. Infect.
Dis. 39, 227–232. (doi:10.1086/422003)

72. R Core Team. 2020 R: a language and environment
for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing. https://www.
R-project.org/.

73. Hothorn T, Hornik K, Van De Wiel MA, Zeileis A.
2008 Implementing a class of permutation tests:
the coin package. J. Stat. Softw. 28, 1–23. (doi:10.
18637/jss.v028.i08)

74. Craita M. 2021 Countries center box. https://github.
com/mihai-craita/countries_center_box (accessed 1
June 2021).

75. Lavery MR, Acharya P, Sivo SA, Xu L. 2019 Number
of predictors and multicollinearity: what are their
effects on error and bias in regression? Commun.
Stat. Simul. Comput. 48, 27–38. (doi:10.1080/
03610918.2017.1371750)

76. Granoff A, Webster RG. 1999 Encyclopedia of
virology. Amsterdam, The Netherlands: Elsevier.

77. Samuel WM, Pybus MJ, Kocan AA. 2001 Parasitic
diseases of wild mammals. Hoboken, NJ: Iowa State
University Press/Wiley-Blackwell.

78. Strauss EG, Strauss JH. 2007 Viruses and human
disease. Amsterdam, The Netherlands: Elsevier.

79. Williams ES, Barker IK. 2001 Infectious diseases of
wild mammals, 3rd edn. Hoboken, NJ: Iowa State
University Press/Wiley-Blackwell.
80. Antonovics J et al. 2017 The evolution of
transmission mode. Phil. Trans. R. Soc. B 372,
20160083. (doi:10.1098/rstb.2016.0083)

81. Rizkalla C, Blanco-Silva F, Gruver S. 2007
Modeling the impact of Ebola and bushmeat
hunting on western lowland gorillas.
EcoHealth 4, 151–155. (doi:10.1007/s10393-007-
0096-2)

82. Kurpiers LA, Schulte-Herbrüggen B, Ejotre I, Reeder
DM. 2016 Bushmeat and emerging infectious
diseases: lessons from Africa. In Problematic wildlife
(ed. FM Angelici), pp. 507–551. Berlin, Germany:
Springer.

83. Gryseels S et al. 2020 Role of wildlife in emergence
of Ebola virus in Kaigbono (Likati), Democratic
Republic of the Congo, 2017. Emerg. Infect. Dis. 26,
2205. (doi:10.3201/eid2609.191552)

84. Leroy EM et al. 2004 Multiple Ebola virus
transmission events and rapid decline of central
African wildlife. Science 303, 387–390. (doi:10.
1126/science.1092528)

85. Stephens PR, Sundaram M, Ferreira S, Gottdenker N,
Fatema KN, Schatz A, Schmidt JP, Drake JM. In
preparation. Drivers of African filovirus (Ebola and
Marburg) outbreaks. Vector Borne Zoonotic Dis.

86. Olsen SJ, MacKinon LC, Goulding JS, Bean NH,
Slutsker L. 2000 Surveillance for foodborne-disease
outbreaks, United States, 1993–1997. MMWR CDC
Surveill. Summ. 49, 1–62.

87. Murty US, Rao MS, Arunachalam N. 2010 The effects
of climatic factors on the distribution and abundance
of Japanese encephalitis vectors in Kurnool district of
Andhra Pradesh. India. J. Vector Dis. 47, 26.

88. Anyamba A, Small JL, Britch SC, Tucker CJ, Pak EW,
Reynolds CA, Crutchfield J, Linthicum KJ. 2014
Recent weather extremes and impacts on
agricultural production and vector-borne disease
outbreak patterns. PLoS ONE 9, e92538. (doi:10.
1371/journal.pone.0092538)

89. Hahn MB, Monaghan AJ, Hayden MH, Eisen RJ,
Delorey MJ, Lindsey NP, Nasci RS, Fischer M. 2015
Meteorological conditions associated with increased
incidence of West Nile virus disease in the United
States, 2004–2012. Am. J. Trop. Med. Hyg. 92,
1013–1022. (doi:10.4269/ajtmh.14-0737)

90. Jajere SM. 2019 A review of Salmonella enterica
with particular focus on the pathogenicity and
virulence factors, host specificity and antimicrobial
resistance including multidrug resistance. Vet. World
12, 504. (doi:10.14202/vetworld.2019.504-521)

91. Mathews JD, Chesson JM, McCaw JM, McVernon J.
2009 Understanding influenza transmission,
immunity and pandemic threats. Influenza Other
Resp. Viruses 3, 143–149. (doi:10.1111/j.1750-2659.
2009.00089.x)

92. Bakach I, Just MR, Gambhir M, Fung ICH. 2015
Typhoid transmission: a historical perspective on
mathematical model development. Trans. R. Soc.
Trop. Med. Hyg. 109, 679–689. (doi:10.1093/
trstmh/trv075)

93. Price JJ, Carter JH. 1967 An outbreak of
gastroenteritis caused by Salmonella indiana. Public
Health Rep. 82, 551. (doi:10.2307/4593068)

http://dx.doi.org/10.1017/dmp.2020.361
http://dx.doi.org/10.1017/dmp.2020.361
http://dx.doi.org/10.1073/pnas.1006219107
http://dx.doi.org/10.1073/pnas.1006219107
http://dx.doi.org/10.1371/journal.pbio.0020141
http://dx.doi.org/10.1371/journal.pbio.0020141
http://dx.doi.org/10.1503/cmaj.1090215
http://dx.doi.org/10.1503/cmaj.1090215
http://dx.doi.org/10.1371/currents.outbreaks.cecdec16fa17091eea4c4a725dba9e16
http://dx.doi.org/10.1371/currents.outbreaks.cecdec16fa17091eea4c4a725dba9e16
http://dx.doi.org/10.1098/rspb.2009.1778
http://dx.doi.org/10.1098/rspb.2009.1778
http://dx.doi.org/10.1186/2049-9957-3-1
http://dx.doi.org/10.1186/2049-9957-3-1
http://dx.doi.org/10.33751/jhss.v2i2.949
http://dx.doi.org/10.33751/jhss.v2i2.949
http://dx.doi.org/10.3201/eid2210.151956
http://dx.doi.org/10.1016/S0169-5347(01)02144-9
http://dx.doi.org/10.1016/S0169-5347(01)02144-9
http://dx.doi.org/10.1002/joc.5086
http://dx.doi.org/10.1002/joc.5086
http://dx.doi.org/10.1111/geb.13213
http://dx.doi.org/10.1098/rstb.2011.0018
http://dx.doi.org/10.1098/rstb.2011.0018
http://dx.doi.org/10.1111/ele.13631
http://dx.doi.org/10.1007/s13280-016-0809-2
https://www.cdc.gov/onehealth/what-we-do/zoonotic-disease-prioritization/completed-workshops.html
https://www.cdc.gov/onehealth/what-we-do/zoonotic-disease-prioritization/completed-workshops.html
https://www.cdc.gov/onehealth/what-we-do/zoonotic-disease-prioritization/completed-workshops.html
https://www.cdc.gov/onehealth/what-we-do/zoonotic-disease-prioritization/completed-workshops.html
https://www.gov.uk/government/publications/list-of-zoonotic-diseases/list-ofzoonotic-diseases,selected-zoonotic-diseases-exoticto-the-uk
https://www.gov.uk/government/publications/list-of-zoonotic-diseases/list-ofzoonotic-diseases,selected-zoonotic-diseases-exoticto-the-uk
https://www.gov.uk/government/publications/list-of-zoonotic-diseases/list-ofzoonotic-diseases,selected-zoonotic-diseases-exoticto-the-uk
http://dx.doi.org/10.1016/S0140-6736(12)61151-9
http://dx.doi.org/10.1016/S0140-6736(12)61151-9
http://dx.doi.org/10.1086/422003
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.18637/jss.v028.i08
http://dx.doi.org/10.18637/jss.v028.i08
https://github.com/mihai-craita/countries_center_box
https://github.com/mihai-craita/countries_center_box
http://dx.doi.org/10.1080/03610918.2017.1371750
http://dx.doi.org/10.1080/03610918.2017.1371750
http://dx.doi.org/10.1098/rstb.2016.0083
http://dx.doi.org/10.1007/s10393-007-0096-2
http://dx.doi.org/10.1007/s10393-007-0096-2
http://dx.doi.org/10.3201/eid2609.191552
http://dx.doi.org/10.1126/science.1092528
http://dx.doi.org/10.1126/science.1092528
http://dx.doi.org/10.1371/journal.pone.0092538
http://dx.doi.org/10.1371/journal.pone.0092538
http://dx.doi.org/10.4269/ajtmh.14-0737
http://dx.doi.org/10.14202/vetworld.2019.504-521
http://dx.doi.org/10.1111/j.1750-2659.2009.00089.x
http://dx.doi.org/10.1111/j.1750-2659.2009.00089.x
http://dx.doi.org/10.1093/trstmh/trv075
http://dx.doi.org/10.1093/trstmh/trv075
http://dx.doi.org/10.2307/4593068


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200535

14

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 S

ep
te

m
be

r 
20

21
 

94. Becker LB, Vlad T, Nusser N. 2007 An evaluation of
press freedom indicators. Int. Commun. Gaz. 69,
5–28. (doi:10.1177/1748048507072774)

95. Leiner BM, Cerf VG, Clark DD, Kahn RE, Kleinrock L,
Lynch DC, Postel J, Roberts LG, Wolff S. 2009 A brief
history of the Internet. ACM SIGCOMM Comp.
Commun. 39, 22–31. (doi:10.1145/1629607.1629613)

96. Elith J, Leathwick JR, Hastie T. 2008 A working
guide to boosted regression trees. J. Anim. Ecol. 77,
802–813. (doi:10.1111/j.1365-2656.2008.01390.x)

97. van Ginkel JR, Linting M, Rippe RC, van der Voort A.
2020 Rebutting existing misconceptions about
multiple imputation as a method for handling
missing data. J. Pers. Assess. 102, 297–308. (doi:10.
1080/00223891.2018.1530680)

98. CDC. 2019 Dengue: transmission. September 26,
2019 update. https://www.cdc.gov/dengue/
transmission/index.html (accessed 19 July 2021).

99. LaFond RE, Lukehart SA. 2006 Biological basis for
syphilis. Clin. Microbiol. Rev. 19, 29–49. (doi:10.
1128/CMR.19.1.29-49.2006)

100. Finelli L, Levine WC, Valentine J, Mes L. 2001
Syphilis outbreak assessment. Sex. Transm. Dis. 28,
131–135. (doi:10.1097/00007435-200103000-
00002)

101. Chen JL, Kodagoda D, Lawrence AM, Kerndt PR.
2002 Rapid public health interventions in response
to an outbreak of syphilis in Los Angeles. Sex.
Transm. Dis. 29, 277–284. (doi:10.1097/00007435-
200205000-00005)

102. Radke EG et al. 2012 Dengue outbreak in Key West,
Florida, USA, 2009. Emerg. Infect. Dis. 18, 135.
(doi:10.3201/eid1801.110130)

103. Kuhn JH. 2008 Filoviruses. A compendium of 40
years of epidemiological, clinical, and laboratory
studies (ed. CH Calisher). New York, NY: Springer.
(doi:10.1002/emmm.200900005)
104. WHO. 2013 Global tuberculosis report 2013. Geneva,
Switzerland: World Health Organization. https://
apps.who.int/iris/handle/10665/91355.

105. Cole P. 1979 The evolving case-control study. J.
Chronic Dis. 32, 15–27. (doi:10.1016/0021-
9681(79)90006-7)

106. D’Agata EM. 2005 Methodologic issues of case-control
studies: a review of established and newly recognized
limitations. Infect. Control Hosp. Epidemiol. 26,
338–341. (doi:10.1086/502548)

107. Bucur D, Holme P. 2020 Beyond ranking nodes:
predicting epidemic outbreak sizes by network
centralities. PLoS Comput. Biol. 16, e1008052.
(doi:10.1371/journal.pcbi.1008052)

108. House T, Ross JV, Sirl D. 2013 How big is an
outbreak likely to be? Methods for epidemic final-
size calculation. Proc. R. Soc. A 469, 20120436.
(doi:10.1098/rspa.2012.0436)

109. Tildesley MJ, Keeling MJ. 2009 Is R0 a good
predictor of final epidemic size: foot-and-mouth
disease in the UK. J. Theor. Biol. 258, 623–629.
(doi:10.1016/j.jtbi.2009.02.019)

110. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P,
Martinez-Silveira MS, Stein C, Abela-Ridder B, Ko AI.
2015 Global morbidity and mortality of leptospirosis:
a systematic review. PLoS Negl. Trop. Dis. 9, e0003898.
(doi:10.1371/journal.pntd.0003898)

111. Bisson IA, Ssebide BJ, Marra PP. 2015 Early detection
of emerging zoonotic diseases with animal morbidity
and mortality monitoring. EcoHealth 12, 98–103.
(doi:10.1007/s10393-014-0988-x)

112. Stehr-Green JK, Schantz PM. 1987 The impact of
zoonotic diseases transmitted by pets on human
health and the economy. Vet. Clin. N. Am. Small 17,
1–15. (doi:10.1016/S0195-5616(87)50601-5)

113. Subramanian S et al. 2020 A natural language
processing system for extracting evidence of
drug repurposing from scientific publications. In
Proc. 34th AAAI Conf. on Artificial Intelligence, 7–12
February, New York, NY, pp. 13 369–13 381. Palo
Alto, CA: AAAI.

114. Li F, Zhang M, Fu G, Ji D. 2017 A neural joint model
for entity and relation extraction from biomedical
text. BMC Bioinf. 18, 1–11. (doi:10.1186/s12859-
016-1414-x)

115. Korkin, D, Thieu, T, Joshi, S, Warren, S. 2011 Mining
hostpathogen interactions. In Systems and
computational biology–molecular and cellular
experimental systems (ed. NS Yang), pp. 163–184.
London, UK: IntechOpen.

116. Thieu T, Joshi S, Warren S, Korkin D. 2012 Literature
mining of host–pathogen interactions: comparing
feature-based supervised learning and language-
based approaches. Bioinformatics 28, 867–875.
(doi:10.1093/bioinformatics/bts042)

117. Beltagy I, Lo K, Cohan A. 2019 Scibert: a pretrained
language model for scientific text. arXiv
1903.10676.

118. Wolf T et al. 2020 Transformers: state-of-the-art
natural language processing. In Proc. 2020 Conf.
Empirical Methods in Natural Language Processing:
System Demonstrations (eds Q Liu, D Schlangen),
pp. 38–45. Stroudsburg, PA: Association for
Computational Linguistics.

119. Purse BV et al. 2020 Predicting disease risk areas
through co-production of spatial models: the
example of Kyasanur Forest disease in India’s forest
landscapes. PLoS Negl. Trop. Dis. 14, e0008179.
(doi:10.1371/journal.pntd.0008179)

120. Fang LQ et al. 2016 Transmission dynamics of
Ebola virus disease and intervention
effectiveness in Sierra Leone. Proc. Natl Acad. Sci.
USA 113, 4488–4493. (doi:10.1073/pnas.
1518587113)

http://dx.doi.org/10.1177/1748048507072774
http://dx.doi.org/10.1145/1629607.1629613
http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x
http://dx.doi.org/10.1080/00223891.2018.1530680
http://dx.doi.org/10.1080/00223891.2018.1530680
https://www.cdc.gov/dengue/transmission/index.html
https://www.cdc.gov/dengue/transmission/index.html
http://dx.doi.org/10.1128/CMR.19.1.29-49.2006
http://dx.doi.org/10.1128/CMR.19.1.29-49.2006
http://dx.doi.org/10.1097/00007435-200103000-00002
http://dx.doi.org/10.1097/00007435-200103000-00002
http://dx.doi.org/10.1097/00007435-200205000-00005
http://dx.doi.org/10.1097/00007435-200205000-00005
http://dx.doi.org/10.3201/eid1801.110130
http://dx.doi.org/10.1002/emmm.200900005
https://apps.who.int/iris/handle/10665/91355
https://apps.who.int/iris/handle/10665/91355
http://dx.doi.org/10.1016/0021-9681(79)90006-7
http://dx.doi.org/10.1016/0021-9681(79)90006-7
http://dx.doi.org/10.1086/502548
http://dx.doi.org/10.1371/journal.pcbi.1008052
http://dx.doi.org/10.1098/rspa.2012.0436
http://dx.doi.org/10.1016/j.jtbi.2009.02.019
doi:10.1371/journal.pntd.0003898
http://dx.doi.org/10.1007/s10393-014-0988-x
http://dx.doi.org/10.1016/S0195-5616(87)50601-5
http://dx.doi.org/10.1186/s12859-016-1414-x
http://dx.doi.org/10.1186/s12859-016-1414-x
http://dx.doi.org/10.1093/bioinformatics/bts042
http://dx.doi.org/10.1371/journal.pntd.0008179
http://dx.doi.org/10.1073/pnas.1518587113
http://dx.doi.org/10.1073/pnas.1518587113

	Characteristics of the 100 largest modern zoonotic disease outbreaks
	Introduction
	Exploring the drivers of zoonotic outbreaks
	Reporting bias and other data challenges
	Case study: drivers of the 100 largest bacterial and viral zoonotic outbreaks in recent history

	Case study materials and methods
	Sampling and scoring outbreaks
	Statistical analyses
	Pathogen characteristics

	Case study results and discussion
	Outbreak drivers
	Pathogen characteristics
	Case study conclusions

	Implications for future work
	Sample bias and quantifying outbreak drivers
	Different study systems and related questions

	Conclusion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


